题目:Stability of circulant graphs

时间:11月19日下午14:30

地点:数学院会议室

专家先容:夏彬绉,2009年本科毕业于浙江大学,2014年获得北京大学博士学位。2014-2016年于北京国际数学研究中心从事博士后研究,2016-2017年西澳大利亚大学Research associate,2017年起任职于墨尔本大学,国际组合数学与应用学会(ICA)2017年Kirkman奖获得者。主要研究代数图论、组合学与群论,在诸多国际杂志发表论文近20篇。

讲座内容:A graph is said to be stable if its canonical double cover has no unexpected symmetries. Graph stability has been studied in the literature from different viewpoints. In this talk I will first review these viewpoints and then focus on the stability of circulant graphs. In particular, I will give an answer to a question of Wilson in 2008 on the stability of arc-transitive circulant graphs and infinitely many counterexamples to a conjecture of Marusic, Scapellato and Zagaglia Salvi in 1989.